Приветствую Вас, Гость Среда, 16.07.2025, 02:37
RSS

Меню сайта

    Форма входа

    Категории раздела
    Лабораторные и контрольные работы, решения задач [0]
    Дипломные и диссертационные работы [0]
    Лекции по математике [4]

    Поиск

    Наш опрос
    Оцените мой сайт
    Всего ответов: 16

    Мини-чат
    200

    Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0

     Каталог файлов 
    Главная » Файлы » Высшая математика » Лекции по математике

    В категории материалов: 4
    Показано материалов: 1-4

    Введение в высшую математику, классическое определение, комбинации, полная вероятность, биномиальное распределение, дискретные случайные величины, непрерывные случайные величины, числовые характеристики, введение в мат. статистику, оценки параметров, доверительные интервалы, проверка гипотез, критерий пирсона и дисперсионный анализ.

    105519_75EF9_konspekt_lekciya_po_matematike.zip

    Лекции по математике | Просмотров: 471 | Загрузок: 0 | Добавил: Stavr | Дата: 28.11.2010 | Комментарии (0)

    Очень доступно. Линейная алгебра. Основные определения. Основные действия над матрицами. Транспонированная матрица. Определители. Дополнительный минор. Элементарные преобразования. Миноры. Алгебраические дополнения. Обратная матрица. Базисный минор матрицы. Ранг матрицы. Эквивалентные матрицы. Теорема о базисном миноре. Матричный метод решения систем уравнений. Метод Крамера. Решение произвольных систем уравнений. Совместные системы. Определенные системы. Однородная система. Элементарные преобразования систем уравнений. Теорема Кронекера - Капелли. Метод Гаусса. Элементы векторной алгебры. Коллинеарные векторы. Компланарные векторы. Линейные операции над векторами. Свойства векторов. Базис. Линейная зависимость векторов. Система координат. Ортонормированный базис. Линейные операции над векторами в координатах. Скалярное произведение векторов. Векторное произведение векторов. Смешанное произведение векторов. Уравнение поверхности в пространстве. Общее уравнение плоскости. Уравнение плоскости, проходящей через 3 точки. Уравнение плоскости по 2 точкам и вектору, коллинеарному плоскости. Уравнение плоскости по точке и 2 векторам, коллинеарным плоскости. Уравнение плоскости по точке и вектору нормали. Уравнение плоскости в отрезках. Уравнение плоскости в векторной форме. Расстояние от точки до плоскости. Аналитическая геометрия. Уравнение линии на плоскости. Уравнение прямой на плоскости. Общее уравнение прямой. Уравнение прямой по точке и вектору нормали. Уравнение прямой, проходящей через 2 точки. Уравнение прямой по точке и угловому коэфициенту. Уравнение прямой по точке и направляющему вектору. Уравнение прямой в отрезках. Нормальное уравнение прямой. Угол между прямыми на плоскости. Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой. Расстояние от точки до прямой на плоскости. Кривые второго порядка. Окружность. Эллипс. Фокусы. Эксцентриситет. Директрисы. Гипербола. Эксцентриситет гиперболы. Директрисы гиперболы. Парабола. Полярная система координат. Аналитическая геометрия в пространстве. Уравнение линии в пространстве. Уравнение прямой по точке и направляющему вектору. Параметрическое уравнение прямой. Направляющие косинусы. Угловой коэффициент. Уравнение прямой в пространстве, проходящей через две точки. Общие уравнения прямой. Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей. Угол между прямыми. Условия параллельности и перпендикулярности прямых. Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости. Поверхности второго порядка. Цилиндрические поверхности.  Поверхности вращения.  Сфера. Трехосный эллипсоид. Однополостный гиперболоид. Двуполостный гиперболоид. Эллиптический параболоид. Гиперболический параболоид. Конус второго порядка. Цилиндрическая и сферическая системы координат. Связь цилиндрической и декартовой систем координат. Связь сферической и декартовой системы координат. Линейное (векторное) пространство. Свойства линейных пространств. Линейные преобразования. Матрицы линейных преобразований. Собственные значения и собственные векторы линейных преобразований.Характеристическое уравнение.Собственное направление.Преобразование подобия.  Квадратичные формы.  Определитель квадратичной формы.  Приведение квадратичных форм к каноническому виду.  Введение в математический анализ. Числовая последовательность.  Ограниченные и неограниченные последовательности.  Предел.  Монотонные последовательности.  Число е. Связь натурального и десятичного логарифмов.  Предел функции в точке.  Односторонние пределы.  Предел функции при стремлении аргумента к бесконечности.  Основные теоремы о пределах.  Ограниченные функции.  Бесконечно малые функции.  Свойства бесконечно малых функций.  Бесконечно большие функции и их связь с бесконечно малыми.  Сравнение бесконечно малых функций.  Свойства эквивалентных бесконечно малых функций.  Некоторые замечательные пределы. Непрерывность функции в точке. Разрывная функция.Непрерывная функция.Свойства непрерывных функций.Непрерывность некоторых элементарных функций.Точки разрыва и их классификация.Непрерывность функции на интервале и на отрезке. Свойства функций, непрерывных на отрезке. Равномерно непрерывные функции. Комплексные числа. Тригонометрическая форма числа. Действия с комплексными числами. Формула Муавра. Показательная форма комплексного числа. Уравнение Эйлера. Разложение многочлена на множители. Теорема Безу. Основная теорема алгебры. Элементы высшей алгебры. Основные понятия теории множеств. Операции над множествами. Отношения. Бинарные отношения. Свойства бинарных отношений. Алгебраические структуры. Группа. Изоморфизм. Абелева группа. Кольцо. Поле. Дискретная математика. Элементы комбинаторики. Перестановки. Размещения. Сочетания. Бином Ньютона. Элементы математической логики. Основные равносильности. Булевы функции. Предикаты и кванторы. Графы и сети. Основные определение. Марицы графов. Достижимость и связность. Эйлеровы и гамильтоновы графы. Деревья и циклы. Элементы топологии. Метрическое пространство. Открытые и замкнутые множества. Непрерывные отображения. Гомеоморфизм. Топологическое произведение. Связность. Компактность.  

    117808_97F2A_kurs_vysshey_matematiki.doc

    Лекции по математике | Просмотров: 408 | Загрузок: 0 | Добавил: Stavr | Дата: 28.11.2010 | Комментарии (0)

    244109_36D86_kurs_vysshey_matematiki.doc
    Лекции по математике | Просмотров: 1031 | Загрузок: 0 | Добавил: Stavr | Дата: 28.11.2010 | Комментарии (0)

    Курс лекций по дисциплине "Высшая математика" предназначен для студентов, изучающих данную дисциплину в объеме 540-800 часов в течение 4 семестров. Содержание лекций соответствует ГОС и рабочим программам технических специальностей. Первая часть включает 16 лекций и содержит материал, обычно изучаемый в первом семестре, - линейная алгебра, векторная алгебра, аналитическая геометрия, основы математического анализа (функции, пределы, производная). Вторая часть включает 16 лекций и содержит материал, обычно изучаемый во втором семестре, - исследование функций, неопределенный и определенный интегралы, дифференциальные уравнения, дифференциальное исчисление функций нескольких переменных. Подготовлено на кафедре высшей математики УГТУ-УПИ.

    020658_4467C_kurs_vysshey_matematiki_chasti_1_2.pdf

    Лекции по математике | Просмотров: 586 | Загрузок: 0 | Добавил: Stavr | Дата: 28.11.2010 | Комментарии (1)

    Сделать бесплатный сайт с uCoz
    Copyright MyCorp © 2025